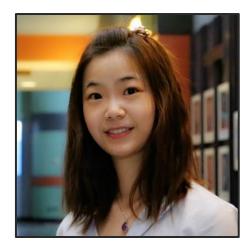


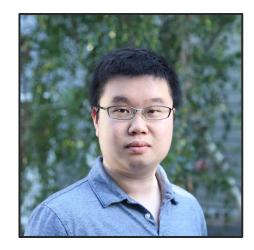
Angular Visual Hardness

Zhiding Yu Machine Learning Group, NVIDIA Research zhidingy@nvidia.com



Beidi Chen, Rice

Weiyang Liu, Georgia Tech



Zhiding Yu, NVIDIA

Jan Kautz, NVIDIA

Anshumali Shrivastava, Rice



Animesh Garg, NVIDIA

Anima Anandkumar, NVIDIA

Human Visual Hardness

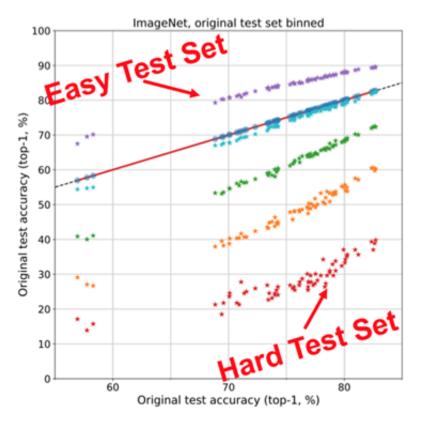
Image Degradation

Semantic Ambiguity

Human Selection Freq (HSF): A Visual Hardness Proxy

valuctions. Unsure? Look up in Wikipedia. Google [Additional input] No good photos? Have expertise? comments? Click hereit First time workers please click here for instructions Selow are the photos you have selected FROM THIS PAGE Circle on the studies that contain the object or depict the concrect of Industrian Marth American appropriate STEADE READ ONLY (they will be saved when DEFINITION CAREFULLY you navigate to other pages 1. Pick as many as possible PHOTOS Click to desplort ted in the image REVEW MODE, TO WORK ON of 12 what's this? select all desident all

Human Labeling Interface



Ideal reproducibility Model accuracy Linear fit Bin [0,0.2) Bin [0.2,0.4) Bin [0.4,0.6) Bin [0.6,0.8) Bin [0.8,1.0]

Recht et al. "Do ImageNet Classifiers Generalize to ImageNet?" ICML 2019

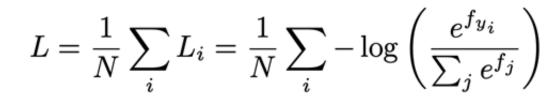
Gap between Human Recognition and CNNs

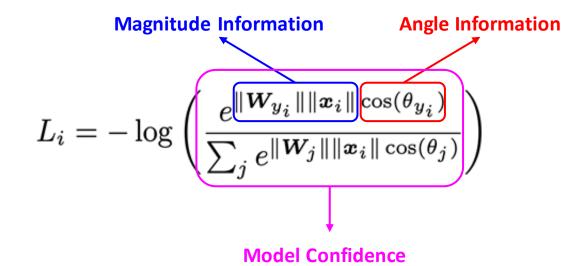
Hard for Human but Easy for CNNs

Easy for Human but Hard for CNNs

	Nail	Oil Filter	Golf Ball	Radio
Softmax	0.93	0.998	0.001	0.001
HSF	0.2	0.2	1.0	1.0

Softmax Cross-Entropy Loss





Angular Visual Hardness (AVH)

Given a sample *x* with label *y*:

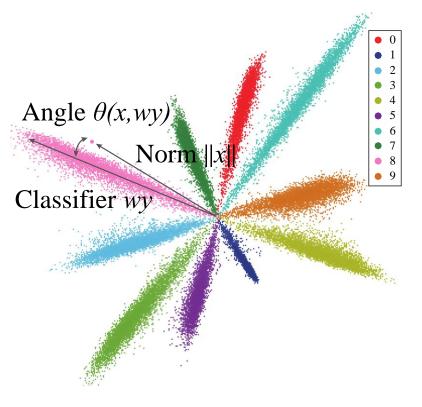
$$AVH(x) = \frac{\mathcal{A}(x, w_y)}{\sum_{i=1}^{C} \mathcal{A}(x, w_i)}$$

where,

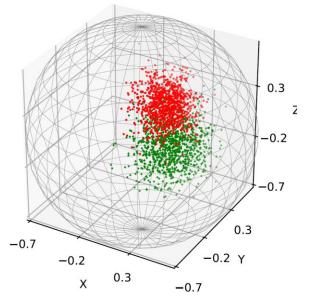
$$\mathcal{A}(\boldsymbol{u}, \boldsymbol{v}) = \arccos(\frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|})$$

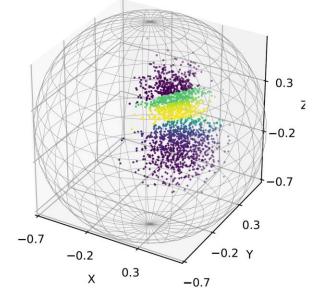
 w_i is the classifier for the *i*-th class.

Theoretical Foundation: Soudry et al, The Implicit Bias of Gradient Descent on Separable Data, ICLR18



Toy Example: AVH vs. ||x||





Heat map of AVH

-0.7 -0.2 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7

Heat map of ||x||

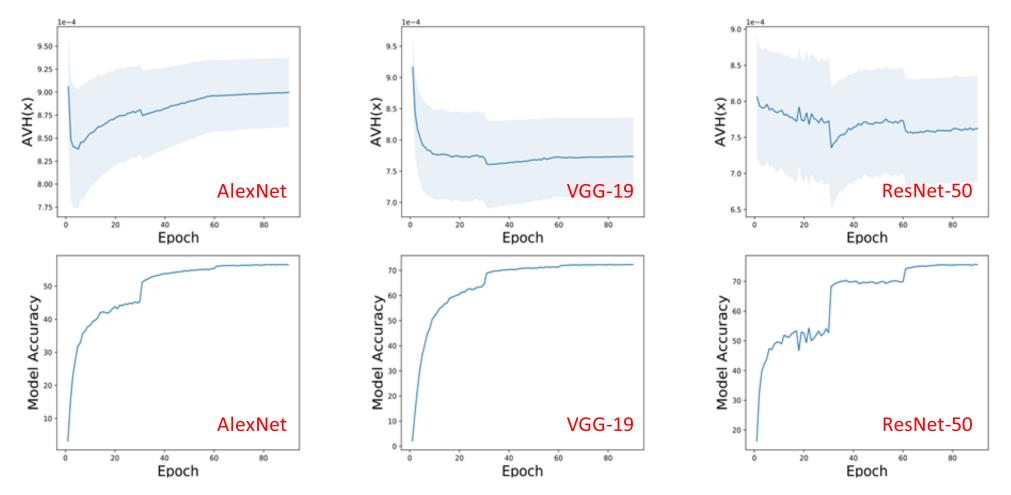
Correlation between Different Measures and HSF



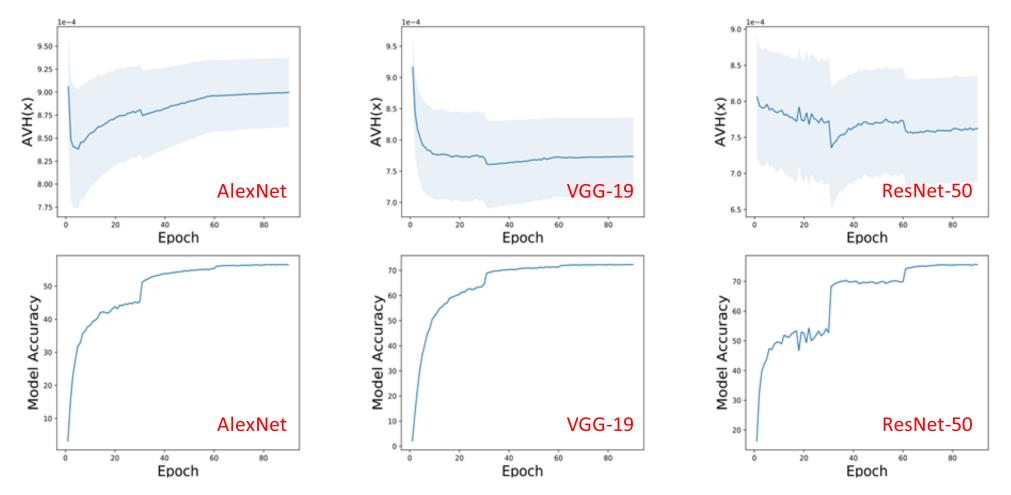
Spearman rank correlations

	z-score	Total Coef	[0, 0.2]	$\left[0.2, 0.4 ight]$	$\left[0.4, 0.6\right]$	[0.6, 0.8]	$\left[0.8, 1.0\right]$
Number of Samples	-	29987	837	2732	6541	11066	8811
AVH	0.377	0.36	0.228	0.125	0.124	0.103	0.094
Model Confidence	0.337	0.325	0.192	0.122	0.102	0.078	0.056
$\ \mathbf{x}\ _2$	-	0.0017	0.0013	0.0007	0.0005	0.0004	0.0003

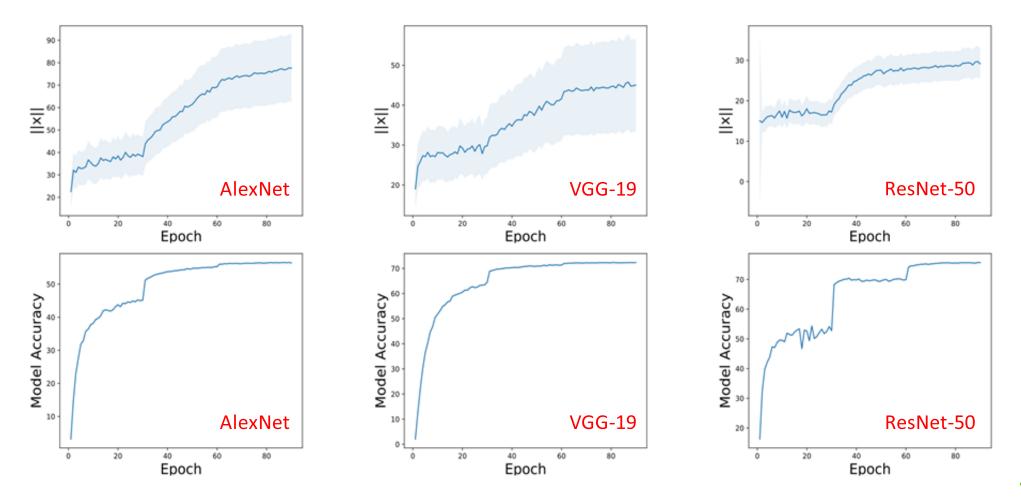
Discovery 1 - AVH hits plateau early even though accuracy or loss is still improving



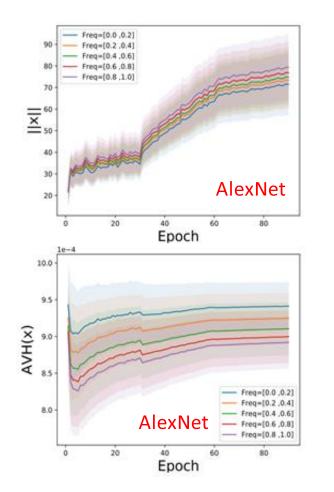
Discovery 2 - AVH is an indicator of model's generalization ability

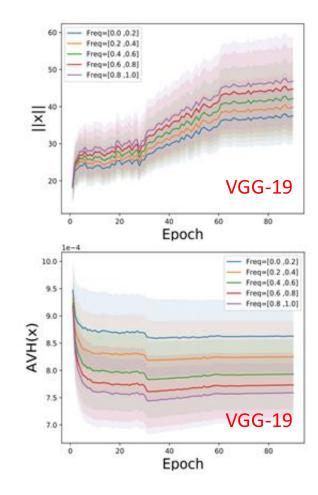


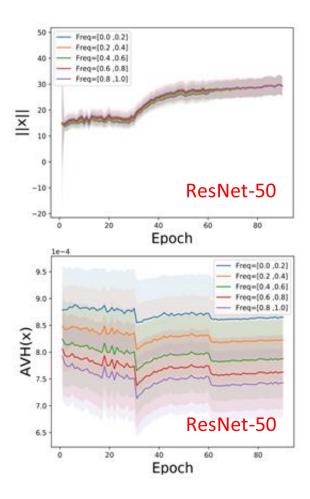
Discovery 3 - The norm of feature embeddings keeps increasing during training



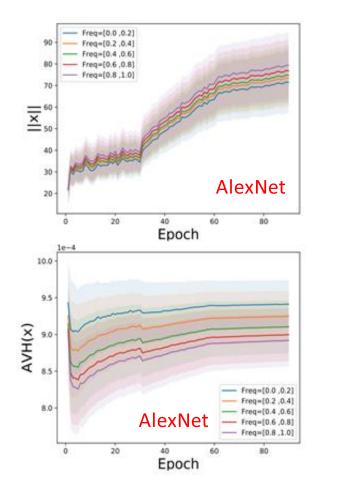
Discovery 4 - Correlation between AVH and human selection freq holds across models

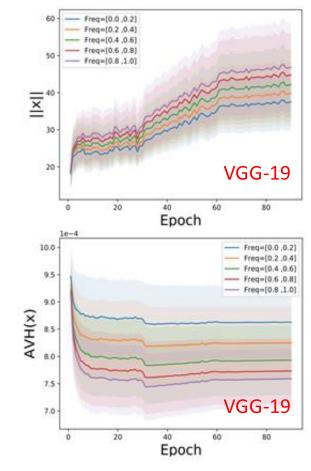


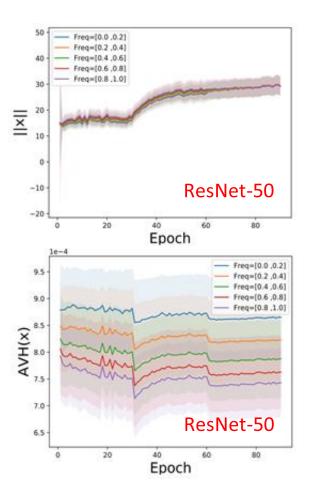




Discovery 5 - Correlation between norm and human selection frequency is not consistent



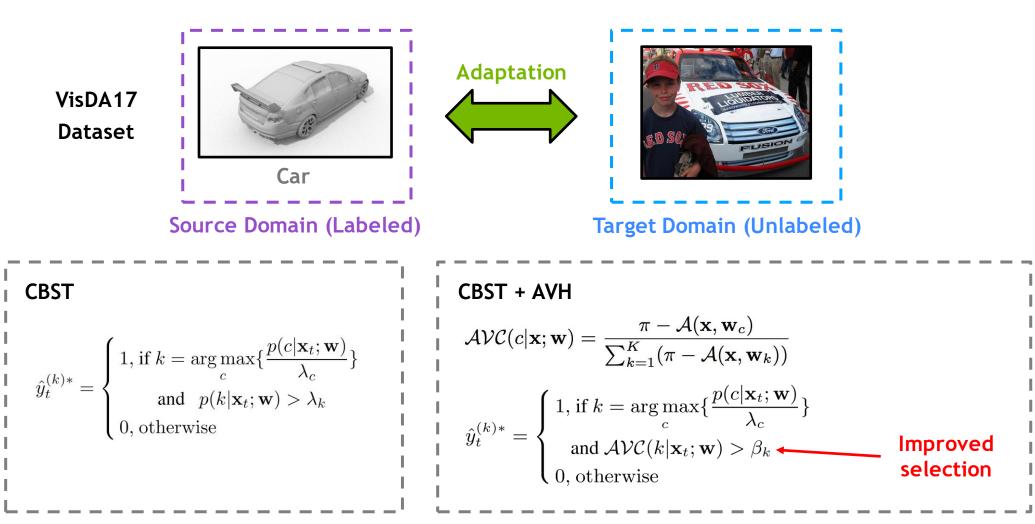




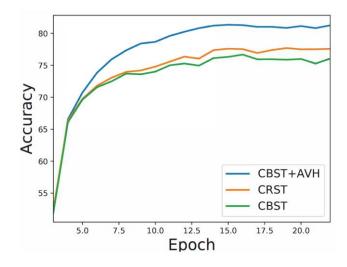
Conjecture on training dynamic of CNNs

- Softmax cross-entropy loss will first optimize the angles among different classes while the norm will fluctuate and increase very slowly.
- The angles become more stable and change very slowly while the norm increases rapidly.
- Easy examples: the angles get decreased enough for correct classification, the softmax cross-entropy loss can be well minimized by increasing the norm.
- Hard examples: the plateau is cause by unable to decrease the angle to correctly classify examples or increase the norms otherwise hurting loss.

Application I: Self-Training for Domain Adaptation



Application I: Self-Training for Domain Adaptation

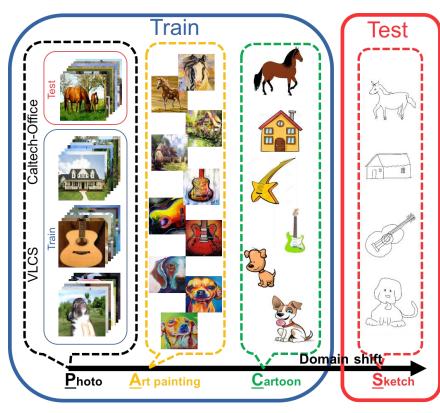


Examples chosen by **AVH but not Softmax**

Method	Aero	Bike	Bus	Car	Horse	Knife	Motor	Person	Plant	Skateboard	Train	Truck	Mean
Source (Saito et al., 2018)	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD (Long et al., 2015b)	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN (Ganin et al., 2016)	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
ENT (Grandvalet & Bengio, 2005)	80.3	75.5	75.8	48.3	77.9	27.3	69.7	40.2	46.5	46.6	79.3	16.0	57.0
MCD (Saito et al., 2017b)	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR (Saito et al., 2018)	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
Source (Zou et al., 2019)	68.7	36.7	61.3	70.4	67.9	5.9	82.6	25.5	75.6	29.4	83.8	10.9	51.6
CBST (Zou et al., 2019)	87.2	78.8	56.5	55.4	85.1	79.2	83.8	77.7	82.8	88.8	69.0	72.0	76.4
CRST (Zou et al., 2019)	88.0	79.2	61.0	60.0	87.5	81.4	86.3	78.8	85.6	86.6	73.9	68.8	78.1
Proposed	93.3	80.2	78.9	60.9	88.4	89.7	88.9	79.6	89.5	86.8	81.5	60.0	81.5

Application II: AVH Loss for Domain Generalization

PACS Dataset



$$\mathcal{L}_{AVH} = \sum_{i} \frac{\exp\left(s(\pi - \mathcal{A}(\mathbf{x}_{i}, \mathbf{w}_{y_{i}}))\right)}{\sum_{k=1}^{K} \exp\left(s(\pi - \mathcal{A}(\mathbf{x}_{i}, \mathbf{w}_{k}))\right)}$$

Method	Painting	Cartoon	Photo	Sketch	Avg
AlexNet (Li et al., 2017)	62.86	66.97	89.50	57.51	69.21
MLDG (Li et al., 2018)	66.23	66.88	88.00	58.96	70.01
MetaReg (Balaji et al., 2018)	69.82	70.35	91.07	59.26	72.62
Feature-critic (Li et al., 2019)	64.89	71.72	89.94	61.85	72.10
Baseline CNN-9	66.46	67.88	89.70	51.72	68.94
CNN-9 + AVH	71.56	69.25	89.93	60.86	72.90

Thanks You!